N

InNcormPOoBATED

Android Boot Camp

Day 1 - Android and Databases
Ronald L. Ramos
December 2015

Ronald L. Ramos, Technology Group

Ronald L. Ramos

rlramos@smart.com.ph
09298874076/ 5113175
Twitter: @taleweaver

Facebook: rlramos@gmail.com

Blog: http://brickstories.blogspot.com

Instagram: taleweaver

nnnnnn

* Get the presentation here:

http://mobiledev.ronaldramos.info/
androidbootcamp2016/

Introduce yourself

Name/Nickname

Android Dev experience

Expectations for the training

Smartphone user? What’s your smartphone?
Favorite tv show? Why?

nnnnnn

Topics

History of Android

Android Basics

ListViews

Creating DBs local to the device

nnnnnn

What is Android?

Android is an open mobile phone platform that was
developed by Google and later by Open Handset
Alliance. Google defines Android as a "software stack"
for mobile phones.

A software stack is made up of operating system(the
platform on which everything runs), the middleware
(the programming that allows applications to talk to a
network and to one another) and the applications (the

actual programs that phage will run)
K]

networld

Brief History

July 2005 - Google Inc. bought from Danger Inc

Open Handset Alliance was formed headed by Google
which is composed of companies like Intel, T-Mobile,
Spring Nextel and more.

In 2008, Android became available as an open source and
the ASOP(Android Open Source Project) is responsible
for maintainance and development of android.

]

3 { .
Cohriine: 2000 tha firct an? :‘J?-’\?rl vaorcinn winc ralancad

Android Versions

Version Number __[Name |

1.1

1.5

1.6
2.0/2.1
2.2.x
2.3.x

3.X
4.0-4.0.4
4.1-43.1
4.4

5

6

Cupcake
Donut

Eclair

Froyo
Gingerbread
Honeycomb
Ice Cream Sandwich
Jelly Bean
KitKat

Lollipop
Marsh Mallow

networld

Android Version Market Share
COE=NEIETT

Froyo 8
233 Gingerbread 10 5.6%
237
403 Ice Cream 15 5.1%
404 Sandwich
41.x Jelly Bean 16 14.7% oy
4.2.x 17 17.5%
4.3 18 5.2
44 KitKat 19 39.2%
5.0 Lollipop 21 11.6%
51 22 0.8%

Data collected during a 7-day period ending on June 1, 20175.

Any versions with less than 0.1% distribution are not shown.

Note: When developing an application, consider the market share of the android
version. The higher the market share, the r number your target market is.

networld

https://developer.android.com/about/dashboards/index.html

10

Screen Densities Distribution

m 7.6% 0.1% 39.9% 19.8% 15.9% 83.3%

0.4% 4.8% 2.2% 0.6% 0.6% 8.6%
Total 4.5% 15.5% 2.3% 40.8% 21.0% 15.9%
xhdpi
xxhdpi
Normal
A s

~— Xlarge —~

hap

Large

tvdpi

Data collected during a 7-day period ending on June 1, 2015.
Any screen configurations with less than 0.1% distribution are not shown.

networld

11

Why develop for Android?

Android is an open-source platform based on the Linux kernel, and
is installed on thousands of devices from a wide range of
manufacturers.

Android exposes your application to all sorts of hardware that you'll
find in modern mobile devices — digital compasses, video cameras,
GPS, orientation sensors, and more.

Android’s free development tools make it possible for you to start
writing software at little or no cost.

When you’re ready to show off your application to the world, you
can publish it to Google’s Android Market. Publishing to Android
Market incurs a one-off registration fee (US $25 at the time of
writing) and, unlike Apple’s App Store which famously reviews each
submission, makes your application available for customers to
download and buy after a quick review process — unless the
application is blatantly illegal.

N

networld

12

More Android Advantages

The Android SDK is available for Windows, Mac and Linux, so you
don’t need to pay for new hardware to start writing applications.

An SDK built on Java. If you're familiar with the Java programming
language, you're already halfway there.

By distributing your application on Android Market, it’s available to
hundreds of thousands of users instantly. You’re not just limited to
one store, because there are alternatives, too. For instance, you
can release your application on your own blog. Amazon have
recently launched their own Android app store also.

As well as the technical SDK documentation, new resources are
being published for Android developers as the platform gains
popularity among both users and developers.

N

networld

13

SETTING UP THE ANDROID
DEVELOPMENT ENVIRONMENT

nnnnnnnn

14

What you’ll need

15

Android Studio

* http:// _
developer.android.co
) Welcome to Android Studio | m/tOO|S/StUdIO/
" index.html

* Android Studio is the
official IDE for

Android application

| development, based

' on Intelli) IDEA
N

networld

http://developer.android.com/tools/studio/index.html

16

HELLO WORLD

nnnnnnnn

Creating a New Android Project

¢ Open AndrOid Welcome to Android Studio
Studio

* Select “Start a e
new Android [l
Studio Project” e

uuuuuuuuu

,f‘; 1 8uild 1411903250 for pdates now

networld

18

Configure project

Croato New Project

New Project
Android Studio

Configure your new project

Application name: | My Application

Company Domain: [sulit.ph

Package name: ph.sulit.myapplication

Project location: | /U:

Cancel | [Previous | (MENGXGMM Finish

Select Target Devices

Create New Project

H Target Android Devices

Select the form factors your app will run on

Different platforms require separate SDKs.

 Phone and Tablet
Minimum SDK | APl 15: Android 4.0.3 OceCreamSandwich)
Lower AP levels target more devices, but have fewer features available. By targeting API 15

and later, your app will run on approximately 90.4% of the devices that are active on the
Google Play Store. Help me choose..

v
Minimum SDK | API 21: Android 5.0 (Lollipop)
) Wear
Minimum SDK | API 21: Android 5.
Glass.
Minimum SDK | Glass Development

Cancel Previous | [EiNexti] finish

20

Select Activity Template

e o Create New Project

H Add an activity to Mobile

An activity is the basic program module in Android. An app has at least one Activity

Name the default files

/* Customize the Activity

Creates a new blank activity with an action bar.

Activity Name: MainActivity
Layout Name: activity_main
Title: MainActivity

Menu Resource Name: menu_main

Blank Activity

Building 'MyApplication' Gradle project info

Gradle: Build

TS AR S Y Y """ """ Cancel

22

The workbench

Crae Executing

A N\
networld

Once gradle has finished building your new project you will be taken to the AS

workbench

23

Running the project

s —— * Click “Play” on the
toolbar

* You will be asked
where to run your

app.
) Launch emulator
Android virtual device: | Galaxy Nexus API 10 Test Phone + ° Ch Oose o" I_a u n C h

Use same device for future launches

; — Emulator”

N

networld

Running the emulator

]

networld

The console on Android Studio will display status messages regarding the running
app.

The emulator should also boot up on your PC

25

The running app

26

YOUR FIRST ANDROID APP

nnnnnnnn

27

Create a New Android Project

* Click on File > New > Project
 Select Android Application

nnnnnn

28

Create a new Android Project

Project Name:
MyFirstForm
Min SDK: Android 4.0
Application Name:
My First Form
Package Name

com.yourname.myfi
rstproject
Activity Name:
ﬂ@l’ MyFirstActivity

nnnnnn

Create a new android project in
Android Studio

29

Create a New Android Project

* Click on Finish

* Once the project appears in project explorer
you have just completed your first android

app
* Try it by clicking run

nnnnnn

30

MODIFYING YOUR PROJECT

nnnnnnnn

31

Modify main.xml in res\layout

mainxml £

Click Me!

nnnnnnnn

Modify the layout main.xml in the res
\layout folder

It will contain one EditText (a textbox)
and one Button

Modify the Activity

@ Avplications Places System
©© O Java- myFirstForm/src/com/rondroid/samples/myfirstform/MyFirstFormActivityJava - Eclipse

File Edit Run Source Navigate Search Project Refactor Window Help
) -0+ Q- @ G- & v | P
MyFirstFormActivity.java &2) dataF v
package com.rondroid.samples.myfirstform;

+import android.app.Activity;
public class MyFirstFormActivity extends Activity {

- public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
final Button btn = (Button) findViewById(R.id.buttonl);
OnClickListener ocl = new OnClickListener(){

public void onClick(View arge) {
Log.v("com.rondroid","testing testing");

|5

btn.setOnClickListener(ocl);

Code the activity.

The activity will do the following:

1. Add an event listener (onClick) to
the button

2. When someone clicks an entry will
be posted to Android's built in log

33

Run the Activity

Make sure you have
the LogCat screen

nnnnnnnn

To see the result add a log filter to
Eclipse's logcat window

Everytime you click on the button it
will reflect in logcat

34

Modify the Activity again

myrsE ULy Jove

package com.rondrmd.samfles.myflrstform;
+import android.app.Activity;

public class MyFirstFormActivity extends Activity {
hen t rst ted

- public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

final Button btn = (Button) findViewById(R.id.buttonl);
final EditText et = (EditText) findViewById(R.id.editTextl);

OnClickListener ocl = new OnClickListener(){

Over
public void onClick(View arge) {
Log.v("com.rondroid","testing testing");
String msg = et.getText().toString();
Toast.makeText(getApplicationContext(),
"Hello " + msqg ,
Toast.LENGTH LONG) .show();

b

btn.setOnClickListener(ocl);

) [ATutorialon Andro... P [training] ™ [android] & Java-myFirstFormy... I [day3]

Now that we know our button is

working we can add more complex

code.

The code we are adding will get

whatever text is in the EditText and

display it in a pop-up message.

35

00 sssemyapplication

Click Me!

Hello Ronald

W

2nd run of application

Toast message
appears on the
screen reflecting
value in EditText
control

networld

36

MyFirstForm

ronald

Example:

Create the following
form

It contains an
EditText,
Button and
TextView

Whenever you click
the button it will
display “Hello ” + the
content of the

4 EditText in the

]

I\L TextView

37

Main.xml

@ Applications Places System)

Java - myFirstForm/res/layout/main.xml - Eclipse

File Edit Run Source Navigate Search Project Refactor Window Help
iv (=) Baild p-0-Qv &G ®E 4

a mainxml 22 . [) MyFirstFormActivityjava | [3) dataFunjava

<?xml version="1.9" encoding="utf-8"7>
i <Linearlayout xmlns:android="http://schemas.android.com/apk/res/android"
% android:orientation="vertical" android:layout width="fill parent"

android:layout height="fill parent">
<EditText android:id="@+id/editText1" android:layout width="match parent”
android:layout_height="wrap_content">
<requestFocus></requestFocus>
</EditText>
<Button android:text="Click Me!" android:id="@+id/buttonl” h
android:layout width="wrap content” android:layout height="wrap content"></Button>
<TextView android:text="TextView" android:id="@+1d/textViewl"

android:layout width="wrap_content” android:layout height="wrap content"></TextView>
</LinearlLayout>

38

Activity code

public class MyFirstFormActivity extends Activity {

/** Called when the activity is first created. */ [N
@Override
- public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.main);

final Button btn = (Button) findViewById(R.id.buttonl);
° final EditText et = (EditText) findviewById(R.id.editTextl)
final TextView tv = (TextView) findViewById(R.id.textViewl);
onClickListener ocl = new OnClickListener(){
@Override
- public void onClick(View arg0) {
//Log.v("com.rondroid","testing testing");
String msg = et.getText().toString();
//Toast.makeText (getApplicationContext(),

// "Hello " + msg ,

// Toast.LENGTH LONG).show();
tv.setText("Hello " + msg);

}

}i
btn.setoOnClickListener(ocl);

Writable Smart Insert 1

[A Tutorial on Andro P [training] ™ [android] myFirstForm/

N

networld

PRESENTING DATA: LISTVIEWS

nnnnnnnn

40

What is a ListView?

* Android provides the view "ListView" which is capable
of displaying a scrollable list of items.

— "ListView" gets the data to display via an adapter.

— An adapter which must extend "BaseAdapter" and is
responsible for providing the data model for the list and
for converting the data into the fields of the list.

* Android has two standard adapters, ArrayAdapter and
CursorAdapter .

— "ArrayAdapter" can handle data based on Arrays or Lists
— "SimpleCursorAdapter" handle database related data.

* You can develop your own Adapter by extending these
classes or the BaseAdapter class.

N

networld

41

ListView Examples

@ 5554:A07.AP1.8

Bl @ 5:01

ends.

Android ListView Example Twitter g I« N cl1l«s

Unity Technologies . Gre sther
Unity 4.3: Read the full re 3¢ notes:) « A

Fujitsu
R Video: @Fu ands on with

the new

#Windows8 2FujitsuForum

networld

http://www.codelearn.org/android-tutorial/android-listview

Listltem

* An Android listview is
made from a group of list
items.

* List items are individual

rows in listview where Unity Technologies

the data will be displayed. K& 1 st
* Any datain listview is

displayed only through

listitem. Consider Listview

as scrollable group of list

items.

N

networld

An Android listview is made from a group of list items. List items are individual rows
in listview where the data will be displayed. Any data in listview is displayed only
through listltem. Consider Listview as scrollable group of list items.

List items are just layouts in a separate layout file. Let us understand the following
example.

Android Listview Twitter tweet example
Here we can see a listitem for the twitter application. This list Item is arranged in a
Relative layout with images and multiple text views aligned to each other. This is how

an Android listview is designed.

Once we have the listitem, we bind the listview to the Adapter and then use list items
to display the data in listview.

43

Main.xml

<?xml version="1.0" encoding="utf-8"7?>
<LinearlLayout android:id="@+id/LinearLayout0l"

android:layout width="fill parent"
android:layout height="fill parent"

xmlns:android="http://schemas.android.com/apk/res/android">
<ListView android:id="@+id/ListView01"
android:layout width="wrap content"
android:layout height="wrap content" />
</LinearLayout>

]

networld

44

Activity code

public class MyListViewActivity extends Activity {
/** Called when the activity is first created. */
private ListView 1lvl;
private String
lv_arr[]={"Android", "iPhone", "BlackBerry", "AndroidPeople"};
@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.main);
lvl=(ListView) findViewById(R.id.ListView01l);
// By using setAdapter method in listview we an add string array in
list.
lvl.setAdapter (new
ArrayAdapter<String>(this,android.R.layout.simple list item 1 , 1lv_arr));
}

]

networld

45

Adding Click Reactions

private ListView 1lvl;

private String lv_arr[]={"Android","iPhone","BlackBerry","AndroidPeople"};
@QOverride

public void onCreate (Bundle savedInstanceState) {

super.onCreate (savedInstanceState);

layout.main);

lvl.setOnItemClickListener (this);

// By using setAdpater method in listview we an add string array in list.
lvl.setAdapter (new
ArrayAdapter<String>(this,android.R.layout.simple list_item 1 , 1lv_arr));

public void onItemClick(AdapterView arg0, View v, int position, long arg3) {

// TODO RAuto-generated method stub
Toast.makeText (this, "u clicked " + lv_arr(position]

,Toast.LENGTH_LONG) . show () ;

networld

46

Adapters

* Android Adapteris a

bridge between the View
(e.g. ListView) and the
underlying data for that
view. An adapter
manages the data and
adapts the data to the

- e individual rows (listltems)

ListView Cursory' Of the VIEW

* We bind the adapter with
Android listview via
setAdapter method.

N

networld

Adapter

Android Adapter is a bridge between the View (e.g. ListView) and the underlying data
for that view. An adapter manages the data and adapts the data to the individual
rows (listltems) of the view.

We bind the adapter with Android listview via setAdapter method. Now, Let us see
how adapter works with the help of the following image.

Android Listview Adapters

As stated earlier, Adapters act as a bridge to the views. To interact with the view,
adapters call the getView() method which returns a view for each item within the
adapter view. This is a listitem which we have seen earlier. The layout format and the
corresponding data for an item within the adapter view are set in the getView()
method.

Once we have a reference to the view, we can get the data from the data source
either in an Array list or a cursor. We can then bind the data to the view items. All
this is done in getView Method. In coming sections, we will look as to how we can
achieve this in our code.

47

—

| ———
1 t-in Dt | §

SQLITE DATABASES AND ANDROID

nnnnnnnn

e SQLite is an Open Source Database which is
embedded into Android. SQLite supports
standard relational database features like SQL
syntax, transactions and prepared statements. In
addition it requires only little memory at runtime
(approx. 250 KByte).

* Using SQLite in Android does not require any
database setup or administration. You specify the
SQL for working with the database and the
database is automatically managed for you.

N

networld

Working with databases in Android can be slow due to the necessary I/O. Therefore is
it recommended to perform this task in an AsyncTask .

SQLite supports the data types TEXT (similar to String in Java), INTEGER (similar to
long in Java) and REAL (similar to double in Java). All other types must be converted
into on of these fields before saving them in the database. SQLite itself does not
validate if the types written to the columns are actually of the defined type, you can
write an integer into a string column.

If your application creates an database this database is saved in the directory "DATA/
data/APP_NAME/databases/FILENAME". "DATA" is the path which
Environment.getDataDirectory() returns, "APP_NAME" is your application name and
"FILENAME" is the name you give the database during creation.
Environment.getDataDirectory() usually return the SD card as location.

A SQlite database is private to the application which creates it. If you want to share
data with other applications you can use a Content Provider.

49

SQLiteOpenHelper

* To create and upgrade a database in your Android application you
usually subclass "SQLiteOpenHelper". In this class you need to
override the methods onCreate() to create the database and
onUpgrade() to upgrade the database in case of changes in the
database schema. Both methods receive an "SQLiteDatabase"
object.

* SQLiteOpenHelper provides the methods getReadableDatabase()
and getWriteableDatabase() to get access to an "SQLiteDatabase"
object which allows database access either in read or write mode.

* Forthe primary key of the database you should always use the
identifier "_id" as some of Android functions rely on this standard.

N

networld

50

SQLiteDatabase methods

» "SQLiteDatabase" provides the methods insert(),
update() and delete() and execSQL() method
which allows to execute SQL directly.

* The object "ContentValues" allow to define key/
values for insert and update. The key is the
column and the value is the value for this
column.

* Queries can be created via the method
rawQuery() which accepts SQL or query() which
provides an interface for specifying dynamic data
or SQLiteQueryBuilder.

N

networld

SQLiteBuilder is similar to the interface of an content provider therefore it is typically
used in ContentProviders. A query always returns a "Cursor".

The method query has the parameters String dbName, int[] columnNames, String
whereClause, String[] valuesForWhereClause, String[] groupBy, String[] having,
String[] orderBy. If all data should be selected you can pass "null" as the where
clause. The where clause is specified without "where", for example "_id=19 and
summary=?". If several values are required via ? you pass them in the
valuesForWhereClause array to the query. In general if something is not required you
can pass "null", e.g. for the group by clause.

51

Cursor

* A Cursor represents the result of a query. To get
the number of elements use the method
getCount(). To move between individual data
rows, you can use the methods moveToFirst()
and moveToNext(). Via the method isAfterLast()
you can check if there is still some data.

* A Cursor can be directly used via the
"SimpleCursorAdapter" in ListViews.

N

networld

52

A SAMPLE DB APP

nnnnnnnn

53

Create a new project

New Project

A Android Studio

: Configure your new project

Company Domain: | info.ronaldramos

Package name: ronaldramos info.myinternaldbsample

Project location: | /U:

54

Create a new project

Create New Project

H Target Android Devices

Select the form factors your app will run on {
your app | [«] < |

Different platforms may require separate SOKs

Add No Activi
@ Phone and Tablet v

Minimum SOK API 15: Android 4.0.3 (lceCreamSandwich)
Lower AP! levels target more devices, but have fewe

and later, your app will run on approximately 94.0%
Google Play Store. Blank Activity

Help me choose

Wear

]

networld

55

Create a new projec

° o Craate Now Project

Q Customize the Activity

Mphdirsamie g s ronsams e s < Mankcovey
P 01 @ sy manaet x| € Manacomey s

¢
g7 e package ronaldramos. info.nyadaptersanple;

T rotmer o missange | 18P0FE
T oy

wmox o madapwrsamo % PubLAC class MainActivity extends AppCompatActivity {

Creates a new ematy activity i
. protected void onCreate(Bundle savedInstanceState) {

{ setContentView(R. layout.activity_main);

Activity Name: | MainActivity
¥ Generate Layout File

Layout Name: activity_main

Empty Activity

networld

56

How the app components are split

App layer
— Ul
Data storage layer

— application specific and deals with creating the
database and operations on it but these are still
database independent.

SQLite layer

— deals with DB access

Specific operations through a db helper
N

networld

Systems Design

While the app is very simple the plumbing around constructing a database is complex
at first. The layered architecture is shown i the figure below. The operation on the
SQLite database is wrapped in a few layers of abstraction. | view these layers as
follows:

app layer -- just deals with comments and the Ul

data storage layer -- application specific and deals with creating the database and
operations on it but these are still database independent.

SQLlte layer -- this deals with all the plumbing and database

specific operations through a db helper

You won't see these layers necessarily like this in the literature but | think it helps
explain the architecture and operations. There is a separation of concerns: the app
deals with objects that matter to it, i.e., comments; and the lower layers deal with
storage of data, and eventually the detail operations of an SQL database. You want to
hide these details from the user. For example, I'm sure you are thinking -- why make
this so hard? Why not have the app reach down into the SQLite code and just leave it
like that. But we use abstraction -- of layering -- to hid the grubby details from the

app layer.

57

Person class

package ronaldramos.info.myinternaldbsample;

public class {
private long id;
private String name;

public void (long id){
this.id = id;

public long (914
return this.id;

public void setName(String name){
this.name = name;
}

public String getName(){

return this.name;

public String toString() {
return name;

N

networld

This class will represent one record in the table.

The application simply allows the user to add names to the database and display
them to the Ul. Names can be added one at a time, deleted (from the top) one at a
time or all names can be deleted. So Person is the main object that the user deals
with. The Person class includes getters/setters for id and name. Every time a person
needs to be added a Person is instantiated. The Person class is the app model and
contains the data that is inserted, queried and deleted in the database. Names are
also shown in the Ul.

CODE:
package ronaldramos.info.myinternaldbsample;
)//Jk *
* Class to hold a single Person (1 record)
¥/
public class Person {
private long id;
private String name;

public void setld(long id){
this.id = id;

58

SQLiteHelper class

package ronaldramos.info.myinternaldbsample;
import android.content.Context;

import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteOpenHelper;
import android.util.Log;

public class MySQLiteHelper extends SQLiteOpenHelper {
public static final String TABLE_NAME = “persons";
public static final String COLUMN_ID = "_id";
public static final String COLUMN_NAME = "name";
private static final String DATABASE_NAME = “personsDB";
private static final int DATABASE_VERSION = 1;

private static final String DATABASE_CREATE = “create table "
+ TABLE_NAME + "(" + COLUMN_ID + " integer primary key autoincrement, "
+ COLUMN_NAME + " text not null);";
public MySQLiteHelper(Context context) {
super(context, DATABASE_NAME, null, DATABASE_VERSION);
}

public void onCreate(SQLiteDatabase database) {
database.execSQL(DATABASE_CREATE) ;

}
public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
Log.w(MySQLiteHelper.class.getName(), "Upgrading database from version "
+ oldVersion + " to " + newVersion + ", which will destroy all old data")

| db.execSQL("DROP TABLE IF EXISTS " + TABLE_NAME);

onCreate(db);
N

}
}
networld

The MySQLiteHelper (which extends SQLiteOpenHelper) implements the helper class
to manage database creation and version management. It implements onCreate()
and onUpgrade() to take care of opening the database if it exists, creating it if it does
not, and upgrading it as necessary. Transactions are used to make sure the database
is always in a sensible state (e.g., database.execSQL(DATABASE_CREATE)).

Code:
package ronaldramos.info.myinternaldbsample;
import android.content.Context;
import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteOpenHelper;
import android.util.Log;
/**Class to facilitate creation and upgrade of DB*/
public class MySQLiteHelper extends SQLiteOpenHelper {
public static final String TABLE_ NAME = "persons";
public static final String COLUMN_ID ="_id";
public static final String COLUMN_NAME = "name";
private static final String DATABASE_NAME = "personsDB";
private static final int DATABASE_VERSION = 1,
// Database creation sql statement
private static final String DATABASE_CREATE = "create table "

59

The Data Storage Layer: DBHelper
class

package ronaldramos.info.myinternaldbsample;

import android.content.Context;
import android.database.sqlite.SQLiteDatabase;

igport java.sql.SQLException;
public class {

private SQLiteDatabase H

private MySQLiteHelper SQLHelper;

private Stringl(] = { MySQLiteHelper.COLUMN_ID,
MySQLiteHelper.COLUMN_NAME };

private static final String = "DBDEMO";

public (Context context) {
SQLHelper = new MySQLiteHelper(context);
}

public void open() throws SQLException {
database = SQLHelper.getWritableDatabase();
}

public void 0 A{
SQLHelper.close();
}
}

N

networld

DBHelpermaintains the database connection and supports adding, fetching and
deleting comments. CommentsDataSource creates the MySQLiteHelper class which
details with the actual SQLite database. Very little of the internal details of the SQLite
layer are exposed to the data storage layer, as you can see in the code below. The
database constants such as the column names are exposed; in our case just one
column name: COLUMN_COMMENT and the column ID: COLUMN_ID. These
database constants are made public by the SQLite layer discussed in the next section.
These public constants are needed for inserting and querying comment objects in the
database.

The constructor creates the database. It first creates a db helper
MySQLiteOpenHelper to deal with operations on the database. After the db helper is
created the constructor opens the database, as shown the code below.

The database is a SQLiteDatabase object, exposing methods to manage a SQLite
database. SQLiteDatabase has methods to create, delete, execute SQL commands,
and perform other common database management tasks.

The code calls getWritableDatabase() to open and obtain a writable instance of the
underlying database using the db helper implemented in the SQLite layer. If the
database does not exist the helper executes its onCreate() handler -- see

60

App specific operations on storage:
insert and deleting

* The data storage layer also provides the key
operations on the database in terms of the
application specific data object, in our case:
Person. These operations are:

1. createPerson(String person), which inserts a Person
in the database as content values. This method also
issues a query to read back what was written.

2. deletePerson(Person person), which deletes a

Person

deleteAllPersons(), empties the database.

4. getAllPersons() , which gets all the persons listed in
the DB

w

N

networld

61

DBHelper — Create a Person

public Person (String name) {
ContentValues values = new ContentValues();
values.put(MySQLiteHelper.COLUMN_NAME, name);
long insertId = database.insert(MySQLiteHelper.TABLE_NAME, null,
values);
Cursor cursor = database.query(MySQLiteHelper.TABLE_NAME,

null, null, null);

cursor.moveToFirst();
Person newPerson = cursorToPerson(cursor);

Log.d(TAG, "comment = " + cursorToPerson(cursor).toString()
+ " insert ID = " + insertId);

cursor.close();
return newPerson;|

N

networld

allColumns, MySQLiteHelper.COLUMN_ID + " = " + insertId, null,

CODE:

public Person createPerson(String name) {

ContentValues values = new ContentValues();

values.put(MySQLiteHelper.COLUMN_NAME, name);

long insertld = database.insert(MySQLiteHelper.TABLE_NAME, null,
values);

Cursor cursor = database.query(MySQLiteHelper.TABLE_NAME,
allColumns, MySQLiteHelper.COLUMN_ID +" =" + insertld, null,
null, null, null);

cursor.moveToFirst();

Person newPerson = cursorToPerson(cursor);

// Log the comment stored
Log.d(TAG, "comment =" + cursorToPerson(cursor).toString()
+ " insert ID =" + insertld);

cursor.close();
return newPerson;

62

DBHelper — Delete records

public void (Person person) {
long id = person.getId();
Log.d(TAG, "delete comment = " + id);
System.out.println("Person deleted with id: " + id);
database.delete(MySQLiteHelper.TABLE_NAME, MySQLiteHelper.COLUMN_ID
+ " =" + id, null);
}
public void 0 A

System.out.println("All persons deleted all");

Log.d(TAG, "delete all = ");

database.delete(MySQLiteHelper.TABLE_NAME, null, null);
}

N

networld

CODE:
public void deletePerson(Person person) {

long id = person.getld();
Log.d(TAG, "delete comment =" +id);
System.out.printin("Person deleted with id: " + id);

database.delete(MySQLiteHelper.TABLE_ NAME, MySQLiteHelper.COLUMN_ID

+"="+id, null);

public void deleteAllPersons() {

}

System.out.printin("All persons deleted all");
Log.d(TAG, "delete all = ");
database.delete(MySQLiteHelper.TABLE_NAME, null, null);

63

DBHelper — Other functions

public List<Person> () A{
List<Person> persons = new ArraylList< >();

Cursor cursor = database.query(MySQLiteHelper.TABLE_NAME,
allColumns, null, null, null, null, null);

cursor.moveToFirst();
while (!cursor.isAfterLast()) {
Person person = cursorToPerson(cursor)
Log.d(TAG, "get comment = " + cursorToPerson(cursor).toString());
persons.add(person);
cursor.moveToNext () ;

}

cursor.close();
return persons;

}

private Person cursorToPerson(Cursor cursor) {
Person person = new Person();
person.setId(cursor.getLong(@));
person.setName(cursor.getString(1));

return person;
N

networld

CODE:
public List<Person> getAllComments() {
List<Person> persons = new ArrayList<Person>();

Cursor cursor = database.query(MySQLiteHelper.TABLE_NAME,
allColumns, null, null, null, null, null);

cursor.moveToFirst();
while (!cursor.isAfterLast()) {
Person person = cursorToPerson(cursor);
Log.d(TAG, "get comment =" + cursorToPerson(cursor).toString());
persons.add(person);
cursor.moveToNext();
}
// Make sure to close the cursor
cursor.close();
return persons;

USING THE HELPER CLASSES

nnnnnnnn

65

DELETE

DELETE ALL

networld

66

Main XML

Component Tree (
7 Device Screen 1
RelativeLayout L:
linearLayout
. add (Button)
. delete (Button)
. deleteAll (Button)
. inputName (EditText)

N

networld

CODE:

<?xml version="1.0" encoding="utf-8" ?>
<RelativeLayout xmlins:android="http://schemas.android.com/apk/res/android"
xmins:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent" android:paddingLeft="@dimen/
activity_horizontal_margin"
android:paddingRight="@dimen/activity_horizontal_margin"
android:paddingTop="@dimen/activity_vertical_margin"
android:paddingBottom="@dimen/activity_vertical_margin"
tools:context=".MainActivity">

<LinearlLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="horizontal"
android:id="@+id/linearLayout"
android:gravity="center">

<Button

67

onCreate()

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R. layout.activity_main);

datasource = new DBHelper(this);
try{
datasource.open();

catch (Exception e){

}
ListView lv = (ListView)findViewById(R.id.listView);

List<Person> values = datasource.getAllComments();

android.R.layout.simple_list_item_1, values);
lv.setAdapter(adapter);

ArrayAdapter<Person> adapter = new ArrayAdapter< >(this,

MainActivity

Process()

iewById(R. id. listView) ;

= (ArrayAdapf) W

EditText et
switch (view

case R.id.add:
String name = et.getText().toString();

ndViewById(R.id.inputName);

person = datasource.createPerson(name);
adapter.add(person) ;
breal

r
case R. i
it).getCount() > 0) {
n) lv.getAdapter().getItem(0);
Person(person) ;
rson);

break;
case R.id.deleteAll:
if (lv.getAdapter().getCount() > @) {
datasource.deleteAllPersons() ;
adapter.clear();
}
break;
}
adapter.notifyDataSetChanged();
}

N

networld

-9

CODE

package ronaldramos.info.myinternaldbsample;

import android.os.Bundle;

import android.support.v7.app.AppCompatActivity;

import android.view.View;

import android.widget.ArrayAdapter;
import android.widget.EditText;
import android.widget.ListView;

import java.sql.SQLException;
import java.util.List;
import java.util.Random;

public class MainActivity extends AppCompatActivity{

private DBHelper datasource;

@Override

protected void onCreate(Bundle savedinstanceState) {

super.onCreate(savedInstanceState);

68

END DAY 1

nnnnnnnn

